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Alzheimer’s disease (AD) is a terrible and degenerative disease commonly occurring in the elderly. Early
detection can prevent patients from further damage, which is crucial in treating AD. Over the past few
decades, it has been demonstrated that neuroimaging can be a critical diagnostic tool for AD, and the fea-
ture fusion of different neuroimaging modalities can enhance diagnostic performance. Most previous
studies in multimodal feature fusion have only concatenated the high-level features extracted by neural
networks from various neuroimaging images simply. However, a major problem of these studies is over-
looking the low-level feature interactions between modalities in the feature extraction stage, resulting in
suboptimal performance in AD diagnosis. In this paper, we develop a dual-branch vision transformer with
cross-attention and graph pooling, namely CsAGP, which enables multi-level feature interactions
between the inputs to learn a shared feature representation. Specifically, we first construct a brand-
new cross-attention fusion module (CAFM), which processes MRI and PET images by two independent
branches of differing computational complexity. These features are fused merely by the cross-attention
mechanism to enhance each other. After that, a concise graph pooling algorithm-based Reshape-
Pooling-Reshape (RPR) framework is developed for token selection to reduce token redundancy in the
proposed model. Extensive experiments on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) data-
base demonstrated that the suggested method obtains 99.04%, 97.43%, 98.57%, and 98.72% accuracy for
the classification of AD vs. CN, AD vs. MCI, CN vs. MCI, and AD vs. CN vs. MCI, respectively.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Alzheimer’s disease (AD) and its prodromal stage, mild cogni-
tive impairment (MCI), are the primary causes of dementia. The
increasing impairment of memory and cognitive abilities differen-
tiates AD and MCI. Between 2000 and 2019, the number of people
who passed from AD increased by more than 145% in the United
States in 2019 (Alzheimer’s disease facts and figures, 2022). More
than 11 million Americans are offering unpaid caregiving of around
16 billion hours worth $271.6 billion to people with AD in 2021
(Alzheimer’s disease facts and figures, 2022). The report shows that
the global burden of AD will reach $2 trillion, and 152 million peo-
ple will suffer from AD by 2050 (Patterson, 2018). There is no effec-
tive drug or method of curing AD for this complicated pathogenesis
(Liu, 2020). Consequently, precise early detection and treatment of
AD are of utmost importance.

Generally, according to different pathological features, the dis-
ease has three stages: control normal (CN), MCI, and AD. Neuropsy-
chological tests and neuroimaging diagnoses are the primary
clinical examination methods for AD. The mini-mental state exam-
ination (MMSE) and the clinical dementia rating (CDR) are the
most commonly utilized tools for clinical neuropsychological
evaluation of AD and assist doctors in determining the stage of a
patient. With medical technology’s rapid advancement,
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neuroimaging has become the mainstream method for diagnosing
AD. Due to the great precision presentation of brain tissue and the
capacity to differentiate between grey and white matter, magnetic
resonance imaging (MRI) has turned into the common tool for neu-
roimaging diagnosis of AD. positron emission tomography (PET),
another widely adopted neuFroimaging tool for diagnosing AD,
may detect the spread of lesions and alterations in glucose metabo-
lism using imaging agents. Moreover, the fusion of complementary
information provided by different neuroimaging modalities further
improves AD’s diagnostic performance.

In the past decades, inspired by deep learning in the field of
computer vision, deep learning methods have been extensively
employed in AD Computer-Aided Diagnosis (CAD) (Suk et al.,
2014; Liu et al., 2023). However, most methods only utilized uni-
modal images as input, and information provided by unimodal
images is one-sided, which may lead to suboptimal performance
for AD diagnosis. Researchers have recently shown increasing
interest in multimodal images for AD diagnosis, and more deep
learning-based multimodal feature fusion algorithms have been
created (Kong et al., 2022; Zhang et al., 2019). Specifically, accord-
ing to the type of input modalities, these algorithms can be split
into four classes: the raw image-based methods, the fused
image-based methods, the generated image-based methods, the
neuroimaging, and clinical data-based methods. The raw image-
based methods feed the multi-input neural networks with the
raw neuroimaging images or their preprocessed images, then fuse
different modal features by latent representation learning (Zhang
and Shi, 2020; Meng, 2022). Although these methods are simple
to implement, they are prone to causing excessive model parame-
ters and ignoring the interaction of information between modali-
ties. The fused image-based methods merge important and
discriminative information from several modalities to a sole fused
image through image preprocessing steps to reduce model param-
eters, then take the sole fused image as model input (Song et al.,
2021; Wu, 2018). However, these preprocessing steps are time-
consuming and also increase computational costs. Due to factors
such as cost or availability, multimodal images are not always fully
realized in practice. To address this limitation and utilize incom-
plete data, the generated image-based methods directly generate
missing data from an available modality through image generation
algorithms such as generative adversarial networks (GANs) (Pan
andWang, 2206; Logan, 2021). Regrettably, it is difficult to analyze
the generated images quantitatively due to the particularity of
medical images.

On the other hand, neuroimaging and clinical data-based
methods combine neuroimaging and clinical data to simulate
the diagnostic process of clinicians (Zhao et al., 2019; Lin et al.,
2021). Even though this method can increase the performance
of AD diagnosis even further, it suffers from the same limitation
of time-consuming preprocessing steps for clinical data. Further-
more, extracting effective features from high-dimensional gene
sequences is challenging.

Although convolutional neural networks (CNNs) ’s convolu-
tional operation improves their ability to capture local information,
this generally results in CNNs learning features that are only rele-
vant to nearby brain regions rather than more generalizable fea-
tures that can be applied across multiple brain regions. It has
been found that even distant brain regions can have significant
interactions. Hence AD-related disorders can affect many different
brain parts (Lyu et al., 2022). A new architecture based on the self-
attention mechanism, vision transformer (ViT), was designed to
effectively model global context without layering hierarchical con-
volution layers. ViT is powerful in classifying AD in several investi-
gations (Zhu, 2022; Kushol et al., 2022). Notably, the problem of
token redundancy (Rao et al., 2021) in ViT without taken into
account in their models.
2

Additionally, from the point of view of multimodal feature
fusion strategy, most existing multimodal data fusion diagnosis
methods purely combine high-level selected features from the var-
ious modalities to merge their information, ignoring the fusion of
low-level features. Compared to high-level features, low-level fea-
tures have higher resolution and contain more location and detail
information which is equally important for AD diagnosis. On the
other hand, feature extraction and fusion stages are performed
independently in these methods, ignoring the cross-modal interac-
tions, which restricts the model from learning a shared representa-
tion (Khan et al., Jun. 2021). Cross-modal interaction has been
shown to fully fuse features and further improve model perfor-
mance (Tan and Bansal, 2019).

In this paper, we design a dual-transformer based on cross-
attention and graph pooling algorithm (CsAGP) to solve the above
issues, which enables multi-level feature interaction between the
input modalities through the cross-attention mechanism. Specifi-
cally, we first construct a dual-branch framework for extracting
multimodal features and disease classification. Then, to learn rich
fused features, an innovative cross-attention fusion module
(CAFM) is built to extract and fuse multimodal features based on
the self-attention mechanism. To reduce token redundancy in the
proposed model, a concise Reshape-Pooling-Reshape (RPR) frame-
work was developed to select tokens of high significance via a
graph pooling algorithm while avoiding high computation and
memory costs. The proposed CsAGP has performed satisfactorily
in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) data-
base. Our major contributions are as follows:

(1) A dual-branch vision transformer with cross-attention and
graph pooling algorithm, called CsAGP, is present to model
the global information of images based on the pure self-
attention mechanism to detect multimodal fused features
for AD diagnosis.

(2) An innovative cross-attention mechanism-based multi-
modal feature fusion method is suggested, which can effi-
ciently learn a shared feature representation of MRI and
PET images.

(3) A concise Reshape-Pooling-Reshape (RPR) framework is
developed, which filters tokens based on a graph pooling
algorithm to reduce computation costs and token redun-
dancy in the proposed model.

2. Related work

This section first introduces the current deep learning-based
multimodal AD diagnosis methods. Generally, based on the type
of input modalities, these methods can be split into four classes:
(i) the raw image-based methods, (iii) the fused image-based
methods, (iii) the generated image-based methods, and (iv) the
neuroimaging clinical data-based methods. Then, an introduction
to vision transformers for AD diagnosis is described.

2.1. Deep learning-based multimodal AD diagnosis

The raw image-based methods input raw neuroimaging images
of different modalities or their preprocessed images into multi-
input neural networks to fuse features between modalities by
latent representation learning. Fang et al. (Fang et al., 2020)
employed three CNNs (GooleNet, ResNet, and DenseNet) with a
dropout mechanism and the Adaboost ensemble algorithm to
improve AD’s classification precision. They built a stack of CNNs
to learn multimodal representations from MRI and PET images
while utilizing the Adaboost ensemble algorithm to fuse their
probabilistic scores. In their model, the dropout mechanism is uti-
lized to exclude the slices with poor discrimination. However, the
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Adaboost ensemble algorithm prioritized misclassification data,
which could lead to a bias due to noise data.

Adaptive-similarity-based multimodal feature selection
(ASMFS) was developed by Shi et al. (Shi, 2022); which combines
adaptive similarity learning with feature selection. Unfortunately,
they only checked the efficacy of their model for binary classifica-
tion problems and did not test it for multi-class situations. Jiao
et al. (Jiao et al., 2022) devised a multimodal feature selection
approach (FC2FS), which generates feature equivalence regulariza-
tion and feature construction regularization through the similarity
matrix calculated from the multimodal feature vertices. Finally, a
support vector machine (SVM) is employed to finish the process
of AD diagnosis. It is possible that the model’s generalization abil-
ity was not maximized because only standard techniques of gener-
ating correlation coefficients were used throughout the
construction of the similarity matrix. Zhang et al. (Zhang et al.,
2021) developed a 2.5D CNN-based framework that extracts 2.5D
patches from the hippocampal areas of MRI and PET images. Then,
these 2.5D patches are integrated by a training approach termed
branching pre-training to provide a full AD diagnosis.

Although the above methods can further raise the accuracy of
AD diagnosis compared with traditional machine learning methods
(Shi et al., 2019; Richhariya et al., May 2020), multi-input neural
networks demand a lot of model parameters and computational
costs. In addition, since only the high-level features of different
modalities are concerned, the latent representation learning over-
looks feature interactions between modalities. The fused image-
based methods integrate important and discriminative informa-
tion from several modalities into a sole fused image based on
image fusion algorithms and then take the fused image as the mod-
el’s input to address these limitations. Song et al. (Song et al., 2021)
acquired a new neuroimaging modality famous as ‘‘GM-PET” by
fusing gray matter (GM) of 3D structural MRI and PET images.
Experimentally, their method can improve accuracy by up to
16.48% compared to the unimodal. Although their method signifi-
cantly reduces the model’s parameters compared to other multi-
modal fusion methods, the preprocessing steps are time-
consuming.

On the other hand, Kang et al. (Kang et al., 2020) obtained frac-
tional anisotropy (FA) and mean diffusivity (MD) 2D image slices
from diffusion tensor imaging by FMRIB Software Library (FSL),
then merged them with the corresponding index MRI image slices
into an RGB image, finally fed the RGB image into the VGG network
to complete the classification of MCI and CN. However, they only
tested their method on the CN vs. MCI task and did not consider
diagnostic tasks involving other stages, such as AD. To avoid the
problem that 2D slices will lose image-spatial information of raw
3D images, similar to Ref. (Song et al., 2021). Kong et al. (Kong
et al., 2022) fused the GM into a 3D GM image and then fed the
3D GM image into a 3D CNN. Finally, they got 93.21% accuracy
on AD vs. CN. Although the above methods can reduce the amount
of computation compared to multi-input neural networks, the pre-
processing steps of image fusion are demanding.

In practice, multimodal images may be incomplete for high
financial costs or availability. To address this limitation and utilize
incomplete data, with generative adversarial networks (GANs), the
generated image-based methods directly produce missing data
from a present modality. By combining a GAN and a dense CNN,
Gao et al. (Gao et al., 2022) constructed a hybrid framework (PT-
DCN) to diagnose AD. To make use of multimodal data, they gener-
ate PET images by the task-induce pyramid GAN. The PT-DCN can
learn and merge multimodal features gradually. However, their
experiment data was derived from ADNI-1 and ADNI-2, which
may affect the experimental accuracy by varying MR scanner
parameters. Zhang et al. (Zhang et al., 2022) developed a 3D GAN
(BPGAN) to generate 3D PET images from MRI images. They
3

devised a cutting-edge hybrid loss function to keep tabs on the
brain data training process. In the end, they obtained an accuracy
of 98.11% for AD vs. CN. Ye et al. (Ye et al., 2022) developed a paired
GAN, which uses deep MRI features extracted by a feature extrac-
tor. The network can produce equivalent PET features in place of
raw MRI images to reduce the model’s size.

While the previous work has proven that generating missing
data for AD diagnosis is possible, it has certain drawbacks when
synthesizing multimodal medical images. First, the trustworthi-
ness of the generated data is a serious issue. There are obvious dif-
ferences between synthetic and real images regarding semantics
and resolution because of the complicated spatial structure of
medical images. Second, erratic training methods. The visual pat-
tern in medical images is often unclear. Since GAN’s training pro-
cesses are prone to instability (Creswell et al., 2018), it is difficult
to spot erratic behavior and implausible outcomes. At last, the
evaluation is not always convincing. Because of the disclosure of
ground-truth images, typical pixel-wise metrics have trouble
quantitatively evaluating generated images.

The clinical diagnosis of AD relies on neuroimaging data but
also the subject’s clinical and biochemical information. It can sig-
nificantly increase the accuracy of AD diagnosis by fusing with
clinical and neuroimaging data. Zhang et al. (Zhang et al., 2019)
employed two separate CNNs to analyze MRI and PET images for
diagnosing AD. They suggested a method based on the Pearson
coefficient that combines the neuroimaging diagnostic with neu-
ropsychological evaluations (MMSE and CDR) to steer the output
of their model. However, they focused solely on the high-level fea-
tures of various modal images and paid little attention to the inter-
actions of the low-level features.

Tu et al. (Tu et al., 2022) created an innovative multimodal AD
diagnostic model. They first suggested a geometric; algebraic
approach that extended low-dimensional clinical data of subjects,
such as profiles, gene sequences, and MMSE scores, to high-
dimensional features at various levels. Second, according to the
degree of influence, the feature filtration algorithm eliminates
irrelevant features from high-dimensional features and yields
transformed ones. Finally, the transformed features are combined
with those extracted by CNNs from MRI images. Nan et al. (Nan,
2022) suggested a framework to investigate the impact of differ-
ent modalities and their combinations on AD diagnosis. Ulti-
mately, they found that with the addition of different modal
data, the diagnostic performance of AD increased gradually. Fur-
thermore, they discovered that adding single nucleotide polymor-
phism (SNP) data could bring a 3% to 7% performance boost to the
AD diagnostic.

2.2. Vision Transformer-Based AD diagnosis

Rather than stacking hierarchical convolution layers, the vision
transformer successfully models the image’s global context based
on the self-attention mechanism. Several works have shown the
potential of vision transformers in AD diagnosis. Lyu et al. (Lyu
et al., 2022) transferred a pre-trained ViT to the brain imaging
dataset. They employed ViT as the backbone network and 2D
MRI images as input and finally got 95.3% accuracy in AD diagnosis.
Zhu et al. (Zhu, 2022) merged representation learning, feature dis-
tillation, and classification into a coherent model termed Brain
Informer (BraInf). They initially deployed a multi-head ProbSparse
self-attention block to minimize computational costs for represen-
tation learning. Later, a structural distillation block was utilized to
underrate the dimension of the three-spatial tensor, which further
reduces computational costs. However, the patch size of MRI
images was predetermined in their experiments, which is ill-
considered as the structural changes within every region produced
by AD are not fixed.
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On the other hand, Jang et al. (Jang and Hwang, 2022) developed
a medical classifier for diagnosing AD. They trained a 3D CNN to
recover local features linked to anomalies of AD from 3D MRI
images and then fed the obtained local features into a transformer
block to combine multi-plane and multi-slice features. This proce-
dure can mark a general representation in 3D MRI images. They
achieved 93.21%, 93.27%, and 85.26% accuracies on the ADNI, AIBL,
and OASIS datasets. Xing et al. (Xing et al., 2022) assembled a block
to transpose the 3D PET images into 2D images and fed the trans-
posed image into a paralleled vision transformer model for AD
diagnosis.

In general, deep learning-based multimodal AD diagnosis meth-
ods can automatically extract the AD-related features from com-
plex neuroimaging images via CNNs without domain-specific
knowledge, which can avoid errors caused by artificial. However,
it is difficult to capture global features that across brain regions
for CNNs. Meanwhile, although the vision transformer-based
methods can model image-global information by the self-
attention mechanism, most works do not consider the problem
of token redundancy in their models. In this paper, we proposed
a dual-transformer that fuses MRI and PET image features based
on the cross-attention mechanism and selects discriminative
tokens using a graph pooling algorithm to reduce redundancy.
3. Materials

Both the database ADNI and the image preprocessing pipelines
are detailed in this section.

3.1. Datasets

Data used in this article were obtained from ADNI, which was
settled in 2003 as a public–private alliance. The ADNI aims to
develop clinical, imaging, and genetic to diagnose AD. Following
the methodology described in Ref. (Golovanevsky et al., 2206),
766 subjects from the ADNI1/GO and ADNI2 phases were selected,
including MRI and PET images. The numbers of AD, MCI, and CN
subjects were 214, 226, and 326, respectively. There includes a
T1-weighted MRI and a PET (FDG-PET) image in a NIfTI file format
for every subject. Table 1 shows the clinical information (e.g., sex,
age, MMSE scores, and CDR scores) of selected subjects. MRI
images of subjects in this paper were acquired by three MR scan-
ners, SIEMENS, Philips Medical Systems, and GE Medical Systems.

The imaging parameters are, respectively, a) repetition time
TR½ �¼ 3000ms, echo time TE½ �¼ 3:5ms, inversion time
TI½ �¼ 1000ms, flip angle ¼ 8

�
, thickness ¼ 1:2mm, matrix size

¼ 192� 192� 160, field strength ¼ 3:0T. b) ½TR� ¼ 6:8005ms,
½TE� ¼ 3:116ms, ½TI� ¼ 0ms, flip angle ¼ 9

�
, thickness ¼ 1:2mm,

matrix size ¼ 256� 256� 170, field strength ¼ 3:0T. c)
TR½ �¼ 7:332ms, TE½ �¼ 3:036ms, TI½ �¼ 400ms, flip angle ¼ 11

�
, thick-

ness ¼ 1:2mm, matrix size ¼ 256� 256� 196, field strength
¼ 3:0T. The ADNI data acquisition details can be seen on the official
webpage of ADNI.2

3.2. Data preprocessing

To remove the impact of various imaging parameters, the raw
images were preprocessed using a normal preprocessing method
described in Ref. (Suk et al., 2014) by the FMRIB Software Library
(FSL)3 and Advanced Normalization Tools (ANTs).4
2 Available at https://adni.loni.usc.edu.
3 Available at https://fsl.fmrib.ox.ac.uk/fsl/fslwiki.
4 Available at https://github.com/ANTsX/ANTs.
5 Available at https://www.nitrc.org/projects/art.

4

First, the acpcdetect software5 shifted all of the raw MRI images
to the exact center of the anterior commissure (AC) to the posterior
commissure (PC) dividing line. After adjustment of force inhomo-
geneity by the nonparametric non-uniform force normalization
(N4) algorithm, these MRI images were processed through the Brain
Extraction Tool (BET) in the FSL to delete the cerebellum and skull.
Second, we ensured that the skulls were clean and the dura was gone
by hand-checking the images. Finally, all the preprocessed MRI
images were spatially normalized onto a standard space.

PET images were precisely aligned with their corresponding
MRI images. The Gaussian kernel was used to further smooth the
preprocessed images. Utilizing the med2image tool,6 181 MRI and
PET axial view slice images were acquired, respectively. Only slices
with indices 80–100 have been used in this paper, as these images
contained the most relevant information for the whole brain. To
meet the input specifications, these slice images were scaled to
224�224. The images before and after preprocessed are shown in
Fig. 1.
4. Methods

Considering the difference in resolution and information in MRI
and PET images, we designed two branches of different computa-
tional complexity by the encoder block proposed in Ref.
(Dosovitskiy, et al., 2010) to process MRI and PET images individu-
ally. The proposed CsAGP, shown in Fig. 2, composes of three com-
ponents: (i) two identical Patch Embed modules are implemented
to convert MRI and PET images into non-overlapping patch tokens,
respectively, (ii) A stack of K CsAGP Blocks that output the final fea-
ture representation for each modality, (iii) a classifier that predicts
AD stage based on the shared feature representation.

The main implementation steps of our model can be described
as follows. Firstly, the Patch Embed module is carried out on 2D
MRI and PET images, which splits and transposes the input image
into a series of patch tokens with a fixed size. Then the positional
encoding and the class token are added to each token sequence.
Then, these token sequences with positional encoding are passed
into the CsAGP Block as image feature sequences. The feature
sequences first pass through the Encoder module, which primarily
consists of the self-attention mechanism and a feed-forward net-
work (FFN). Compared to CNNs, the self-attention mechanism
can efficiently model long-range relationships (Dosovitskiy, et al.,
2010). Secondly, the outputs of the Encoder module are fed into
the CAFM for multimodal feature fusion. The CAFM realizes the
interactions of multi-level features through a pure self-attention
mechanism which is different from the previous methods (Zhang
et al., 2019) that concatenates the high-level features into a long
vector. After that, the fused token sequences are passed through
the RPR framework, which selects the discriminative tokens
through a graph pooling algorithm to reduce token redundancy
and memory costs. Finally, the class tokens of each modality
sequence as an agent are combined to get the shared feature rep-
resentation as the output of CsAGP, as detailed in the following
subsections.

4.1. Patch Embed

In ViT, the original image is directly converted into fixed-size
patches by linear projections alone, which is a poor way to capture
low-level information in images. To overcome this limitation, as
shown in Fig. 2. A novel tokenization approach was employed to
make optimal use of CNN’s strength in retrieving low-level features
and minimizes the training difficulty of embedding by decreasing
6 Available at https://github.com/FNNDSC/med2image.
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Table 1
The clinical information of the subjects.

Diagnosis Number Age Gender(F/M) MMSE CDR

AD 214 75.1 ± 7.8 95/119 21.2 ± 4.1 0.9 ± 0.4
MCI 226 76.0 ± 7.4 82/144 25.6 ± 4.3 0.5 ± 0.3
CN 326 76.1 ± 6.4 165/161 28.7 ± 1.4 0 ± 0

Fig. 1. Contrasting of the raw and preprocessed images.
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the patch size. Specifically, for Mmri branch, given an input image
xmri 2 R3�H�W , to minimize the size of input images, we first utilize
a 7� 7 convolution with a stride of 4 and a padding of 3, then two
additional 3� 3 convolutions with a stride of 2 and padding of 1,
for improved low-level information extraction.

After that, the output x0mri 2 RD�H
P�W

P of the Patch Embed module
is flattened and transposed to get the patch tokens matrix
xmri
patch 2 RN�D, where N ¼ HW=P2 is the number of patches, D is

the number of enriched channels, ðH;WÞ and ðP;PÞ represent the
resolution of the input images and image patches, respectively.
Finally, the positional encoding and an extra class token
xmri
cls 2 R1�D are added as image representations to the patch tokens

matrix xmri
patch, resulting in the final patch tokens matrix

xmri
f 2 RðNþ1Þ�D for further steps. These procedures can be noted as

follows:

x0mri ¼ ReLUðConv3ðReLUðConv2ðReLUðConv1ðxmriÞÞÞÞÞÞ ð1Þ

xmri
patch

¼ TransposeðFlattenðx0mriÞÞ ð2Þ

xmri
f ¼ xmri

cls kxmri
patch

h i
þ PE; PE 2 RðNþ1Þ�D ð3Þ
5

where k is the concatenate operation and PE 2 RðNþ1Þ�D represents
the positional encoding following Ref. (Dosovitskiy, et al., 2010).
The Mpet branch follows the same procedures but takes a 2D PET
image as input and adds another class token xpetcls 2 R1�D.
4.2. Cross-Attention fusion module (CAFM)

The cross-attention fusion module (CAFM) was designed to fuse
multimodal features efficiently. Specifically, let xi

f 2 RðNþ1Þ�D be the
final patch tokens matrix output from the previous step at branch i,
where i represents the i-th branch (Mmri or Mpet).

Fusion in the CAFM involves the class token xi
cls from one

branch and the patch tokens xi
patch from another branch. Specifi-

cally, the class token xi
cls is utilized as an agent to share information

between the patch tokens xi
patch from another branch, and then the

class token xi
cls returns to the i-th branch so that it combines the

multimodal features efficiently and favorably. Following the fusing
of patch tokens from another branch, the class token exchange
information with its own patch tokens once more in the subse-
quent blocks to impart the information obtained from another
branch into its own patch token representations.



Fig. 2. An illustration of the proposed CsAGP.

Fig. 3. Multi-heads cross-attention feature fusion for Mmri branch.
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As shown in Fig. 2. The final matrix xi
f is entered into the CAFM,

which includes two sub-blocks. Each sub-block has two parts. The
first part main contains a multi-heads cross-attention (MCA)
mechanism to swap information between the patch tokens xi

patch

from another branch. An exemplification of the MCA on the Mmri

branch is proved in Fig. 3. For Mmri branch, it first collects the patch
tokens xpet

patch 2 RN�D from the Mpet branch, and then concatenates

them with own class token xmri
cls , as expressed in Eq. (4):

x0 mri ¼ xmri
cls kxpet

patch

h i
ð4Þ

Then, the module performs the MCA between xmri
cls and x0 mri,

where class token xmri
cls of Mmri branch is the query as patch-token

information has already been integrated into the class token. The
MCA could be written mathematically as:

q ¼ xmri
cls Wq;k ¼ x0 mriWk;v ¼ x0 mriWv ð5Þ

A ¼ softmax qkT
=

ffiffiffiffiffiffiffiffiffi
D=h

q� �
ð6Þ
6

MCA x0 mri
� � ¼ Av ð7Þ

where Wq;Wk;Wv 2 RD�ðD=hÞ are learnable parameters, D is the
embedding dimension of tokens, h represents the number of heads.
Because only the class token is utilized in the queries, the computa-
tional and memory costs of MCA are linear instead of quadratic in
constructing A. Finally, the output zmri of the first part with a resid-
ual shortcut is defined as follows:

ymri
cls ¼ xmri

cls þMCA ðxmri
cls kxpet

patch

h i� �
ð8Þ

zmri ¼ ymri
cls kxmri

patch

h i
ð9Þ

The second part primarily consists of a feed-forward net-
work with non-linear activation, which performs a spatial
transformation of zmri by two linear projecting layers to
enhance the representation ability of tokens. It can be described
as follows:

Zmri ¼ LNðFFNðLNðzmriÞÞ þ zmriÞ ð10Þ
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FFNðxÞ ¼ rðxW1 þ b1ÞW2 þ b2 ð11Þ
where W1 2 RD�K is the weight of the first layer, projecting each
token in a higher dimension K. And W2 2 RK�D is the weight of
the second layer. b1 2 R1�K and b2 2 R1�D are the biases. LN repre-
sents the layer normalization, rð�Þ is a non-linear activation
function.

4.3. RPR framework

To reduce token redundancy in the proposed CsAGP, we devel-
oped the Reshape-Pooling-Reshape (RPR) framework, which con-
sists of three stages: (i) tokens to graph (T2G), (ii) graph pooling,
(iii) graph to tokens (G2T), as illustrated in Fig. 4. The token
sequences were converted into graph-structured data in the T2G
stage. A graph pooling algorithm is utilized to filter the tokens,
and only the discriminative tokens are retained. Finally, the pooled
subgraph vertices are reconverted to a token sequence in the G2T
stage for the next step.

4.3.1. Tokens to graph (T2G)

For the Mmri branch, given tokens Zmri 2 RðNþ1Þ�D generated from
the CAFM, we first split them into patch tokens matrix zmri

patch 2 RN�D

and a class token zmri
cls 2 R1�D accordingly. Then, a graph

Gmri ¼ V;Að Þ is constructed, where V represents the vertex set
consisting of vertices v1; � � � ;vNf g, and A 2 0;1f gN�N is the adja-
cency matrix describing the edge connection information of Gmri.

In other words, a graph Gmri with N vertices and each vertex vi

in the graph has a corresponding D-dimensional feature vector
zmri
i 2 R1�D was constructed. The feature matrix zmri

patch 2 RN�D stacks
N feature vectors. Then, the adjacency matrix A was established by
the Euclidean distance between each vertex feature vector. Specif-
ically, if the distance value distij between vertices vi and vj is smal-
ler than average distance l, then Aij¼ 1, which means there is an
edge between vertices vi and vj, otherwise Aij¼ 0. The process of
establishing the adjacency matrix A can be formulated as follows:

dist ¼

kzmri
1 � zmri

1 k2 kzmri
1 � zmri

2 k2 � � � kzmri
1 � zmri

N k2
kzmri

2 � zmri
1 k2 kzmri

2 � zmri
2 k2 � � � kzmri

2 � zmri
N k2

..

. ..
. . .

. ..
.

kzmri
N � zmri

1 k2 kzmri
N � zmri

2 k2 � � � kzmri
N � zmri

N k2

2
666664

3
777775

ð12Þ
Fig. 4. The illustration of the RPR f
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l ¼ 1
N2

XN
i¼1

ð
XN
j¼1

distijÞ ð13Þ

Aij ¼
1 ifdistij < l;
0 otherwise;

	
1 � i; j � N ð14Þ

where k � k2 represents the l2 norm and dist indicates the distance
matrix between vertices. l is the average distances, distij and Aij

are the values of distance matrix dist and A in i-th row and j-th col-
umn, respectively. Finally, the patch tokens graph Gmri is created,
where A and zmri

patch are the adjacency matrix and the feature matrix,
respectively. The Mpet branch generates graph Gpet through the
same way.

4.3.2. Graph pooling
we developed a novel graph pooling algorithm to reduce token

redundancy by selecting the discriminative vertices of Gmri and Gpet

generated in the previous stages. As shown in Fig. 4. The algorithm
evaluates the importance of vertices in multiple ways. The
structure-based learning module (SBLM) and the feature-based
learning module (FBLM) are utilized to score vertices according
to their local structure and feature information to receive scores
s1 and s2, respectively. Then, the structure-feature learning module
(SFLM) obtains the final score s for each vertex by combining s1
and s2. To make the final graph embedding more feature
information, the vertex feature fusion module is employed to
aggregate the features of the vertices to be pooled before discard-
ing them. Finally, only the top-k vertices will be retained according
to the final score s. The details of these procedures in the Mmri

branch can be described as follows, which is the same as the
Mpet branch.

As shown in Fig. 4, the graph Gmri output by the T2G is fed into
three branches to evaluate the importance of vertices in multiple
ways. Since GCNs considers structural information of graphs, it is
utilized to evaluate each vertex based on the structural informa-
tion in SBLM. The mathematical representation is as follows:

s1 ¼ r W�1
2 A
�
W�1

2XW
� �

ð15Þ

where A
�
and X 2 RN�D are the adjacency matrix and the vertex fea-

tures of the graph Gmri, respectively. W denotes the diagonal vertex
ramework of the Mmri branch.
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degree matrix. W 2 RD�1 represents the learnable parameters and
rð�Þ is a non-linear activation function.

In FBLM, each vertex is scored by CNNs based on their feature
information. It mainly consists of a 1D CNN and a Batch Normaliza-
tion layer, mathematically represented as:

s2 ¼ rðBNðConvðXÞÞÞ ð16Þ
where X 2 RN�D represents the feature matrix of the graph Gmri.

Then, the SFLM combines s1 and s2 to calculate the final scores
of the vertices. Given the scores s1 2 RN�1 and s2 2 RN�1 obtained
from SBLM and FBLM, respectively. First, add s1 and s2 to get a
coarse score s0 2 RN�1, then the coarse score s0 is fed into a 1D
CNN to output the final scores s 2 RN�1. It can be denoted as:

s ¼ BNðConvðs0ÞÞ; ands0 ¼ s1 þ s2 ð17Þ
After that, the vertices are sorted by the final score s, and only

the top-k vertices V0 ¼ v1; � � � ;vkf g will be retained as pooling
results.

Finally, To make the final graph embedding vectors more repre-
sentational, we aggregate information from neighborhood vertices
in the feature fusion module with graph attention network (GAT)
before discarding the vertex set V00, where
V00 ¼ V-V0 ¼ vkþ1; � � � ;vNf g represents the set of vertices that will
be discarded. It can be denoted as:

z0 i ¼ r 1
K

XK

k¼1

X
j2Vi

ak
ijW

khj

� �
ð18Þ

where zi and hj represent the feature vector and the neighbor ver-
tices of the vertex vi, respectively. Vi is the number of vertex vi’s
adjacent vertices. K is the number of attention heads. ak

ij is the k-
th attention value between zi and hj. W is the weight matrix.

4.3.3. Graph to tokens (G2T)
Given a subgraph G0mri ¼ V0;A0ð Þ of Gmri obtained from the

graph pooling stage, where V0 ¼ v1; � � � ;vkf g and A0 2 Rk�k repre-
sent the vertex set and the adjacency matrix of G0mri, respectively.
Let X0 2 Rk�D denotes the feature matrix of G0mri. After the graph
pooling stage, the feature matrix X0 is reassembled into token
sequence z0p 2 Rk�D in G2T, then the class token zmri

cls 2 R1�D and a

new positional encoding are added to z0p 2 Rk�D for providing spa-
tial information, that can be expressed as follows:

z0p ¼ reshapeðX0Þ ð19Þ

zout ¼ zmri
cls kz0p


 �þ PE; PE2 Rðkþ1Þ�D ð20Þ
As shown in Fig. 2, the Mpet branch follows the identical opera-

tion as Mmri branch.

5. Experiment and results

In this section, the experimental setup and the results of perfor-
mance evaluation measures are provided. Meanwhile, the acti-
vated area of CsAGP is visualized.

5.1. Experimental setup

All experiments are implemented on a workstation with two
Intel Xeon Gold 6330 CPUs and four Nvidia A100 GPUs with a total
of 160 GB of video memory. This workstation is equipped with
Ubuntu 20.04.1 LTS. We built our model on Pytorch 1.12.0 frame-
work and trained for 300 epochs. Adam is applied as the optimizer,
and more details of experiment settings are as follows: (i) batch
size is set to 128; (ii) loss function adopts the CrossEntropy; (iii);
8

the initial learning rate is set to 1� 10-5 and weight decay is set
to 5� 10-4. In the experimental data, 60% of the data were ran-
domly selected for training, 20% were chosen randomly for valida-
tion, and the rest 20% of subjects were used as test data.

For CsAGP, considering the difference in resolution and infor-
mation contained in MRI and PET images, Following Ref. (Chen
et al., 2021); we set K¼ 3, M¼ 1, N¼ 3. K signifies the number of
CsAGP Block, M and N indicate the number of Encoder of the PET
and MRI branches, respectively. Taking into account the computa-
tion costs and benefits together as a whole, the pooling rate r is set
to 0.5.

5.2. Performance evaluation

To provide a quantitative assessment of the effectiveness of the
suggested method for diagnosing AD, several evaluation metrics,
including accuracy, specificity, and sensitivity, were computed as
follows:

accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

ð21Þ

sensitivity ¼ TP
TPþ FN

ð22Þ

specificity ¼ TN
FPþ TN

ð23Þ

The terms ‘‘true positive,” ‘‘true negative,” ‘‘false positive,” and
‘‘false negative” are represented as ‘‘TP,” ‘‘TN,” ‘‘FP,” and ‘‘FN,”
respectively. In addition to the three criteria discussed above, the
area under the curve (AUC) is another factor considered when
assessing performance. The area under the receiver operating char-
acteristic curve (ROC), sometimes known as the area under the
receiver operating characteristic curve (AUC), is a performance
matrix employed to measure the quality of a classifier, and a large
value of AUC indicates better classification performance.

5.3. Experiment results

In our experiments, the whole data was divided into AD vs. CN,
AD vs. MCI, CN vs. MCI, and AD vs. CN vs. MCI groups to evaluate
CsAGP. Each group of experiments was conducted unimodal (MRI
or PET) and multimodal (MRI and PET). To make the results more
convincing, we took two identical images as the model’s input
when conducting unimodal experiments. Table 2 demonstrates
the comparison of the classification performances of each group.

As can be seen from Table 2, the performance of our CsAGP is
outperforming the unimodal method. Specifically, the developed
multimodal method obtains the classification accuracies of
99.04%, 97.43%, 98.57%, and 98.72% on AD vs. CN, AD vs. MCI, CN
vs. MCI, and AD vs. CN vs. MCI, and the accuracies of MRI modality
are 97.87%, 95.37%, 94.94%, and 94.21%, respectively.

Compared to MRI modality, the proposed multimodal method
improves the classification performance by 1.17%, 2.06%, 3.63%,
and 4.51% on AD vs. CN, AD vs. MCI, CN vs. MCI, and AD vs. CN
vs. MCI, respectively. For PET modality, the accuracies on AD vs.
CN, AD vs. MCI, CN vs. MCI, and AD vs. CN vs. MCI are 95.92%,
94.12%, 94.69%, and 93.37%, respectively. Compared to PET modal-
ity, the proposed multimodal method improves performance rises
of 3.12%, 3.31%, 3.88%, and 5.35%, respectively. The proposed mul-
timodal method can improve classification accuracy by combining
MRI and PET significantly compared with the unimodal method.

On the other hand, it can also be found that the classification
accuracy of MRI modality is surpasses PET modality in each group
of classification experiments. Compared with PET modality, the
accuracy of MRI increases by 1.95%, 1.25%, 0.25%, and 0.84% on



Table 2
Classification results of the unimodal and multimodal method.

Auxiliary diagnosis Modality SEN (%) SPE (%) ACC (%) AUC (%)

AD vs CN MRIPETMRI + PET 96.7391.7297.96 98.3997.8799.54 97.8795.9299.04 99.6298.9799.80
AD vs MCI MRIPETMRI + PET 92.2589.0394.25 96.7296.3398.81 95.3794.1297.43 98.7998.2799.23
CN vs MCI MRIPETMRI + PET 92.6494.6198.52 97.1094.7798.61 94.9494.6998.57 98.9298.8399.76
AD vs CN vs MCI MRIPETMRI + PET 92.9692.2898.65 96.8896.4999.34 94.2193.3798.72 98.8298.2499.86

SEN: sensitivity; SPE: specificity; ACC: accuracy.
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AD vs. CN, AD vs. MCI, CN vs. MCI, and AD vs. CN vs. MCI, respec-
tively. It is evident that the CsAGP can capture more discriminative
features on MRI images when extracting unimodal features. We
consider this is due to the high resolution of MRI images compared
to PET images, which allows for better differentiation between soft
tissue and anatomical structures.

Compared to the results of the other group tasks on the ADNI
database, the diagnostic accuracy of the AD vs. CN task is, on the
whole, higher than that of the other tasks. The same results are also
in Ref. (Gao et al., 2022). This can be interpreted as AD’s primary
neuroimaging features can be distinguished more easily from those
of CN and MCI. Since the subtle AD-related changes that occur in
MCI are not noticeable, distinguishing MCI from AD and CN only
by neuroimaging data is difficult. We further present the perfor-
mance of each group to demonstrate the differences between the
groups intuitively. As seen in Fig. 5, the multimodal performance
acts better than the unimodal, which displays that the classifica-
tion performance can boost the classification efficiencies further
by joining the MRI and PET modalities.

5.4. Comparison with other methods

In this section, we compared our CsAGP to several other multi-
modal methods that are based on the ADNI database. As shown in
Table 3, methods of comparison include the raw images-based
methods (Zhang et al., 2019; Fang et al., 2020; Liu et al., 2022;
Kun et al., 2020), the traditional machine learning method (Shi,
2022); the fused image-based method (Song et al., 2021); the gen-
erated image-based method (Zhang et al., 2022), the neuroimaging
and clinical data-based method (Zhang et al., 2019).

In the AD vs. CN task, the accuracy of Fang et al. (Fang et al.,
2020) was 99.27%, which is slightly larger than our suggested
method. The reason is due to their utilization of ensemble learning,
where the output of their model is based on three CNNs (GooleNet,
ResNet, and DenseNe). By combining multiple different CNNs, they
could leverage their diversity and differences. Each CNN may per-
form better on different subsets of data or feature subspaces. By
aggregating their predictions through ensemble learning, they
were able to reduce bias and variance, improving the overall accu-
racy of the model.

Additionally, Ref. (Fang et al., 2020) also introduced a ‘‘dropout”
mechanism to discard low discrimination images, further reducing
noise in their model’s input data. Although ensemble learning can
enable them to achieve higher classification accuracy, training
three CNNs requires many parameters and computation. In addi-
tion, compared with Fang et al. (Fang et al., 2020), CsAGP gets
the best results except for accuracy.

In the AD vs. MCI task, the sensitivity metric reported by Liu
et al. (Liu et al., 2022) was 94.91%, only 0.66% higher than ours,
which means that the ability of their model to identify positive
examples is slightly more than ours. They diagnosed AD by fusing
multi-scale gray and white matter features fromMRI images, while
we only considered 2D slice images and single-scale feature infor-
mation. By extracting features at different scales and fusing them
together, the model can comprehensively utilize both local details
and global contextual information, enhancing its understanding
9

and expression capability of the images. Additionally, Ref. (Liu
et al., 2022) employs the channel attention mechanism to auto-
matically learn the importance weights of each channel, enabling
the model to focus on relevant features for the task. By enhancing
important channels, the model can improve its perception of cru-
cial information, enhancing its performance.

Our CsAGP gets the best diagnostic performance in CN vs. MCI
and AD vs. CN vs. MCI tasks. This can be attributed to several fac-
tors. Firstly, in addition to leveraging high-level features from dif-
ferent modalities, we also pay attention to the fusion of low-level
features across modalities. This comprehensive integration of both
high-level and low-level features enables the CsAGP to capture a
more comprehensive representation of multimodal data. Secondly,
by simultaneously conducting feature extraction and fusion stages
for different modalities, we facilitate the effective integration of
multimodal features. This simultaneous processing allows the
CsAGP to learn shared representations and exploit complementary
information from different modalities, further enhancing its per-
formance. Furthermore, for reasons that the network parameters
can be drastically decreased thanks to the CAFM and the RPR
framework, the computational complexity and memory cost of
our CsAGP does not rise.

5.5. Ablation experiments

Ablation experiments were carried out in this section of our
CsAGP in order to demonstrate the efficacy of the CAFM and the
RPR framework. To provide an accurate comparison, all experi-
ments utilized the same settings for a fair comparison.

To reduce token redundancy and computation costs, we pro-
posed a graph pooling algorithm to select discriminative tokens,
which evaluates tokens in both feature and structural ways.
Experiments were conducted to investigate the influence of the
graph pooling algorithm on the prediction performance.. Since
multi-classification tasks are more challenging than binary classi-
fication, the CsAGP was evaluated with different pooling rate r
values. The results of the AD vs. CN vs. MCI task are reported in
Table 4.

It can be seen that the classification accuracy is generally
increasing with the increase of r. Specifically, when the pooling
rate r increases from 0.1 to 0.5, the classification accuracy of CsAGP
increases from 96.30% to 98.72%, a rise of 2.42%. However, the
trend of increasing classification performance gradually flattens
out when the pooling rate r is greater than 0.5. For example, when
r¼ 0:9, the accuracy is 99.21%, only up 0.49% compared to r¼ 0:5.
Therefore, considering computation costs and benefits together
as a whole, r is set to 0.5 in our experiments.

As the pooling rate r increases, more tokens are preserved,
allowing the model to capture more information and consequently
leading to a rapid improvement in model performance. However,
as r continues to increase, the noise and the computational cost
of the model also increase. As a result, the trend of performance
improvement of the model gradually flattens out.

To investigate the effectiveness of the FBLM and the SFLM, we
conducted a series of experiments with different strategies. The
results are listed in Table 5. Method A means using MLP to evaluate



Fig. 5. Classification performance of various groups.

Table 3
Performance comparison of the different existing methods.

Tasks Methods SEN (%) SPE (%) ACC (%) AUC (%)

AD vs CN Fang et al (2020) (2020) 95.89 98.72 99.27 n/a
AD vs CN Zhang et al (2019) (2019) 96.58 95.36 98.47 98.61
AD vs CN Shi et al (2022) (2022) 96.10 97.47 96.76 97.03
AD vs CN Song et al (2021) (2021) 93.33 94.27 94.11 n/a
AD vs CN CsAGP (ours) 97.96 99.54 99.04 99.80
AD vs MCI Fang et al (2020) (2020) 89.71 93.59 92.57 n/a
AD vs MCI Zhang et al (2019) (2019) 90.11 91.82 85.74 88.15
AD vs MCI Song et al (2022) (Song et al., 2021) 71.19 85.94 80.80 n/a
AD vs MCI Liu et al (2022) (2022) 94.91 98.52 94.44 97.00
AD vs MCI CsAGP (ours) 94.25 98.81 97.43 99.23
CN vs MCI Fang et al (2020) (2020) 88.36 92.56 90.35 n/a
CN vs MCI Zhang et al (2019) (2019) 97.43 84.31 88.20 88.01
CN vs MCI Shi et al (2022) (2022) 85.98 70.90 80.73 78.75
CN vs MCI Song et al (2022) (Song et al., 2021) 84.69 85.60 85.00 n/a
CN vs MCI CsAGP (ours) 98.52 98.61 98.57 99.76
AD vs CN vs MCI Song et al (2021) (2021) 55.67 83.40 71.52 n/a
AD vs CN vs MCI Han et al (2020) (Kun et al., 2020) n/a n/a 67.74 n/a
AD vs CN vs MCI Zhang et al (2022) (2022) n/a n/a 80.00 95.00
AD vs CN vs MCI CsAGP (ours) 98.65 99.34 98.72 99.86

Bold value means the best indicator value under the same conditions and ’n/a’ means no data.
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the vertex feature information (FBLM*) and linearly weighting sum
vertex scores s1 and s2 (SFLM*).

By changing SFLM* to SFLM, the accuracy improves by 0.24%
(Method A vs. Method B). When we change FBLM* to FBLM, the
10
accuracy increases by 0.4% (Method A vs. Method C). Further, when
using both FBLM and SFLM, as Method D, the accuracy rises by
0.49% (Method A vs. Method D). These results validate that the
comprehensive consideration of both vertex position and feature



Table 4
The classification results for different..r

r SEN (%) SPE (%) ACC (%) AUC (%)

0.1 95.61 98.04 96.30 99.32
0.3 95.56 98.42 97.00 99.49
0.5 98.65 99.34 98.72 99.83
0.7 98.69 99.36 98.79 99.86
0.9 99.00 99.57 99.21 99.90

Table 5
Ablations on FBLM and SFLM.

Method FBLM* SFLM* FBLM SFLM SEN (%) SPE (%) ACC (%) AUC (%)

A
p p

98.49 99.25 98.23 99.86
B

p p
98.46 99.20 98.47 99.79

C
p p

98.51 99.27 98.63 99.81
D

p p
98.65 99.34 98.72 99.86

Table 6
Classification results of removing CAFM.

Auxiliary diagnosis SEN (%) SPE (%) ACC (%) AUC (%)

AD vs CNw/o CAFM 97.9696.13 99.5498.44 99.0497.71 99.8098.71
AD vs MCIw/o CAFM 94.2593.00 98.8196.93 97.4396.05 99.2398.05
CN vs MCIw/o CAFM 98.5294.70 98.6196.60 98.5795.67 99.7699.12
AD vs CN vs MCIw/o CAFM 98.6595.30 99.3497.73 98.7295.70 99.8699.26
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information plays a crucial role in the graph pooling process. Ver-
tex position information aids in understanding the contextual and
topological relationships within the graph structure, while vertex
feature information provides descriptions of vertex attributes and
features, offering crucial information for vertex representation
and learning. Combining these two aspects of information can
assist the model in better understanding and processing graph
Fig. 6. AD-related visualization m

11
data, enhancing the model’s performance and expressive
capabilities.

To evaluate the effectiveness of CAFM in CsAGP, we removed
the CAFM in the CsAGP, while other configurations remained the
same. It can help us to focus on the high-level features fusion of
two modalities. Comparative experiments were performed in all
diagnosis tasks.
ap results using Grad-CAM.
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As seen from Table 6, under the influence of the CAFM, the accu-
racy increases by 1.33%, 1.38%, 2.9%, and 3.02% on AD vs. CN, AD vs.
MCI, CN vs. MCI, and AD vs. CN vs. MCI, respectively. These results
indicate that fusing multi-level features from different modalities
can further improve model performance. High-level features often
contain more abstract and semantically rich information, capturing
the high semantics and contextual information of images.

On the other hand, low-level features focus more on low-level
details and local features. By fusing multi-level features, it is possi-
ble to fully utilize the complementarity of high-level and low-level
features, providing a more comprehensive and rich feature repre-
sentation, and enhancing the model’s understanding and expres-
sive capability. Furthermore, high-level features are usually less
sensitive to modality differences, while low-level features are more
sensitive to such differences. By integrating multi-level features,
the impact of modality differences can be reduced, enhancing the
model’s robustness and generalization ability towards multimodal
images.

In addition, every branch of the transformer in our model devel-
ops the class token as an agent, which can exchange information
between branches by the cross-attention mechanism. This makes
it possible to generate attention maps in linear time rather than
quadratic time.
5.6. Visualization

Fig. 6 shows the activated areas of our CsAGP by the Grad-CAM
technology (Selvaraju et al., 2017). The images on each cell’s left
and right sides represent a slice image of the subject in various
modalities, and the AD-related activation maps corresponded with
the relevant slice image. From Fig. 6(a), it is seen from the heatmap
that the areas of interest are dispersed throughout the brain. It
means that our model can analyze abnormalities throughout the
brain that are related to AD.

Compared with CNNs, transformer-based networks with a high
receptive field have various advantages, one of which is the pres-
ence of wide activated areas. In addition, compared with AD, the
heatmap areas of MCI (Fig. 6(c)) are relatively concentrated, which
may be because MCI is the prodromal stage of AD with few lesion
areas. The heatmap areas of CN (Fig. 6(e)) are mainly focused on
the center of the brain.

Furthermore, due to different imaging protocols and informa-
tion emphases, the heatmap areas of the three stages of PET
images (Fig. 6(b), Fig. 6(d), and Fig. 6(f)) are relatively concen-
trated. It can be seen that the heatmap areas of different stages
focus on different brain regions. This result further proved the
view in Ref. (Suk et al., 2014) that complementary information
can be obtained from a variety of modalities to improve AD diag-
nostic performance.
6. Conclusion

This paper proposes a dual-branch vision transformer with the
cross-attention mechanism and a graph pooling algorithm, CsAGP,
for multimodal AD classification. We designed a multimodal fea-
ture fusion strategy based on the cross-attention mechanism to
effectively learn the shared feature representation of MRI and
PET images. Furthermore, a concise framework based on a graph
pooling algorithm is developed to reduce token redundancy in
the proposed model. Extensive experiments on the ADNI database
demonstrate that the classification accuracy of our proposed
CsAGP for AD vs. CN, AD vs. MCI, CN vs. MCI, and AD vs. CN vs.
MCI are 99.04%, 97.43%, 98.57%, and 98.72%, which is 4.93%,
2.99%, 8.22% and 18.72% higher than current multimodal AD diag-
nosis methods, respectively.
12
The proposed CsAGP is slice-based and considers only axial
view slices. Since 2D images cannot include all the information
from a full brain scan. In addition, this study has not yet conducted
a time processing comparison. Expanding the CsAGP for a full brain
analysis and conducting comparative study on time processing will
be a part of our future research.
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